PCBench: Benchmarking of Board-Level Hardware Attacks and Trojans

Huifeng Zhu
Washington University in St. Louis
zhuhuifeng@wustl.edu

Xiaolong Guo
Kansas State University
guoxiaolong@ksu.edu

Yier Jin
University of Florida
yier.jin@ece.ufl.edu

Xuan Zhang
Washington University in St. Louis
xuan.zhang@wustl.edu

ABSTRACT
Most modern electronic systems are hosted by printed circuit boards (PCBs), making them a ubiquitous system component that can take many different shapes and forms. In order to achieve a high level of economy of scale, the global supply chain of electronic systems has evolved into disparate segments for the design, fabrication, assembly, and testing of PCB boards and their various associated components. As a consequence, the modern PCB supply chain exposes many vulnerabilities along its different stages, allowing adversaries to introduce malicious alterations to facilitate board-level attacks.

As an emerging hardware threat, the attack and defense techniques at the board level have not yet been systematically explored and thus require a thorough and comprehensive investigation. In the absence of standard board-level attack benchmark, current research on perspective countermeasures is likely to be evaluated on proprietary variants of ad-hoc attacks, preventing credible and verifiable comparison among different techniques. Upon this request, in this paper, we will systematically define and categorize a broad range of board-level attacks. For the first time, the attack vectors and construction rules for board-level attacks are developed. A practical and reliable board-level attack benchmark generation scheme is also developed, which can be used to produce references for evaluating countermeasures. Finally, based on the proposed approach, we have created a comprehensive set of board-level attack benchmarks for open-source release.

1 INTRODUCTION
Nowadays, the printed circuit boards (PCBs) are ubiquitous in almost all kinds of electronic systems. The PCBs take in a variety of representations with different sizes, form factors, materials, number of stack layers, and fabrications parameters. Usually the design of a PCB involves hundreds of elements, including both integrated components such as microprocessor chips, field programmable gate arrays (FPGAs), and application-specific integrated circuit (ASICs), and discrete components such as resistors, capacitors, inductors, diodes, transistors. There can also be thousands of signal traces and power rails to enable board-level high-performance communications and power delivery. To address the design complexity, PCB designers need to take various constraints into considerations during the PCB design process. For example, complex hierarchical power delivery system (PDS) is a necessity to fulfill the various power supply requirements of different components. Other constraints such as signal integrity and assemblability should also be carefully considered.

However, among all design constraints, security is often omitted in board-level designs, despite that numerous vulnerabilities are already exploited due to the segmented board-level supply chain [1, 14, 19, 28]. Following the global PCB supply chain, the design, fabrication, test, and the selling of different electronic components are performed by different, often untrusted parties. While researchers start to look into the problem recently and try to develop countermeasures, they meet a main obstacle that targeted security evaluation benchmarks for PCBs are lacking. It is urgently needed to develop benchmarks representing all different types of board-level threats so that different detection techniques can be verified and compared.

In the area of security benchmarking, past research has intensively studied attacks and Trojans at the chip level. In [24] the authors propose standard benchmarks at different levels (RTL, netlist, and layout) to evaluate chip-level hardware Trojans and their detection techniques by leveraging a vulnerability analysis flow. Evaluation metrics of the benchmarks is also introduced such as Trojan detectability. Despite the massive work in developing chip-level Trojan benchmarks [24, 29], those methods, designs, and evaluation results cannot be directly applied to the board level. In the case of inserting chip-level Trojans, the usual assumptions are: both the power supply voltage and the specifications of I/O of on-chip blocks are unified, and malicious circuits can be implemented at any location occupied by filler cells or capacitor cells without routing limitations. However, these assumptions do not hold in benchmarking board-level attacks. For a PCB design, there can be various supply voltage domains and the specifications of the I/O of chips can be different. Besides, the placing and routing of a malicious circuit are limited by the board spare area and density of the traces.

In this paper, we propose a systematic definition and a comprehensive taxonomy of board-level attacks based on the thorough analysis of existing and emerging board-level threats. Potential attack mechanisms and attack vectors are examined and evaluated. Further, a set of constraints for successfully implementing board-level attacks into the target designs are specified. Based on those constraints, a novel rule-based benchmark generation mechanism is developed to create reliable and practical board-level security benchmarks. The main contributions of this paper are as follows.

- We define and categorize the board-level attacks and Trojans based on the target component and attacking mechanism.
- A practical and reliable board-level hardware attacks and Trojans benchmark generation scheme is proposed. This method can guide researchers in developing and evaluating hardware.
countermeasures to emerging board-level vulnerabilities and threats to system security.

- Sample attacks on selected PCB designs are created following the proposed method to validate the proposed benchmarking method.

2 BACKGROUND

2.1 PCB Design Process

Figure 1 (right) illustrates a flight controller board that represents a typical PCB design commonly found in today’s electronic systems. In general, the PCB design process is composed of following steps: top-level design, schematic capture, PCB layout, PCB fabrication, and electrical components assembly. During the top-level design, system architecture and block diagram are defined according to the functional requirements and physical constraints of the system. The detailed specifications of the PCB (e.g., physical dimensions, power routing strategy, cost budget, etc.) are thus determined in this process. Based on the block diagram, the schematic of the PCB is captured. In modern designs, designers will first select the chips that can fulfill the planned functions of each block. Peripheral circuits are then designed around each chip, which are used to supporting the functionality of these chips. At the end of the schematic step, the schematic file (i.e., netlist) and the bill of materials (BOM) file can be generated. The former contains the information of the electrical net connections and the latter defines the exact model including value, vendor, package, etc. of all components in this design.

The PCB layout is similar to the Place&Route (P&R) process of the digital IC design and is designed after the schematic capture step. Different from chip-level P&R process which is often performed automatically relying on design automation tools, the PCB layout is often performed manually due to the sophisticated considerations of power integrity, signal integrity, interference, and assemblability. The layout file (i.e., Gerber file) is prepared in this step. The file contains all components and the routing graphical information and can be used for PCB fabrication. After the PCBs are fabricated, the components are assembled and soldered either manually or automatically guided by the BOM file. Tests and validations can be performed between each step of the process.

2.2 Board-level Attacks

Based on the PCB design process described above, we define board-level attacks as intentional malicious modifications of a PCB during any stages of design, fabrication, assembly, and in-field usage of the PCB. In this definition, we assume any attack that targets the board and its associated component as the victim could constitute a board-level attack. As illustrated in Figure 1, the board-level attacks include the malicious modifications applied to processing units (microcontroller, FPGA, etc.), components (passive components and ASICs), trace/via, fabrication parameters, as well as the deliberate violations of normal usage constraints set by the designers or distributors, i.e. malicious probing and accessing. The modifications can be injected at any phase of the entire procedure of the PCB, including PCB design, fabrication, assembly, and in-field usage. According to the scope specified in our definition, board-level Trojan is a major subset of board-level attacks. A board-level Trojan generally contains two parts: the trigger and the payload [24]. The trigger monitors variations of the signals or a series of events on the board. Once the preset conditions of the trigger are satisfied, the payload will be activated and perform malicious behaviors [29]. Note that the adversaries do not necessarily introduce modifications to the original circuits and may perform the attacks without using any trigger. For board-level attacks, we assume that attackers will not maliciously modify the internal structures of the integrated circuits, i.e. chip-level hardware Trojans. We believe that any modifications inside ICs are part of the chip-level hardware security, rather than board-level hardware security.

2.3 Existing Board-Level Attacks Benchmark

Compared to the abundant literature on chip-level attacks [9, 29], security research on board-level threats is rather sparse. In [17] authors develop a benchmarking solution to facilitate an unbiased and comparable evaluation of countermeasures applicable to PCB trust assurance. However, only KiCAD .NET format netlists are provided by the benchmark to generate the layout of PCBs with and without Trojans. This abstraction level limits the usage of the benchmark and prevents users from evaluating schematic capture and circuit simulation using the same design. Further, Trojans introduced in these benchmarks comprise mainly of discrete components, i.e. BJTs, resistors, and capacitors, to mimic the behaviors of the logic gate. Such simplified strategy does not consider the fact that attackers can take full advantage of off-the-shelf small package chips, e.g. 74-series circuits, to implement more advanced attacks. In this paper, we develop several rules constraining the generation of functional and sneaky attacks. Following these rules, we curate a set of state-of-the-art PCB reference designs projects and generate the benchmark at different abstraction levels based on the rules.

3 BENCHMARKING METHODOLOGY

3.1 Board-Level Attack Vectors

In this section, we summarize and classify the known board-level attacks vectors according to the life cycle of PCB design, the in-field use and the types of modifications. This comprehensive classification also allows us to identify new attack vectors that has not been exploited in the past. The possible attack vectors are listed in Table 1, where board-level attacks can be injected at any phase of the PCB design and fabrication by adversaries, as well as during the in-field usage by users. We divide the entire procedure of the
The M5 S3 and M4 encryption chips. Both game authority check [28] or power side-channel analysis on encryption chips. Examples of such attacks are using a modchip on Xbox to avoid the M5: Probing/Accessing the malicious alterations to the fabrication process, such as the stack layers by the designer. The M2: Component refers to adding vias, where the lines originally are hidden between PCB passive components or the chips. If the attackers only apply malicious modifications to the signal wire or PCB traces/vias, it will be categorized as M3: Trace/Via. For example, the foundry may intentionally expose the signal lines containing sensitive information by adding vias, where the lines originally are hidden between PCB stack layers by the designer. The M4: Fabrication Parameters refers to the malicious alterations to the fabrication process, such as the stack layer thickness, the material of the board or solder, etc. And the M5: Probing/Accessing is the type of attack that the adversaries maliciously access the board port or probe the board-level signal. Examples of such attacks are using a modchip on Xbox to avoid game authority check [28] or power side-channel analysis on encryption chips. Both M4 and M5 can only be implemented at S2 and S3 stage respectively. Also note that some board-level attacks overlaps with chip-level attacks (e.g., side-channel analysis) at M5.

3.2 Rules for Board-Level Benchmarking

Due to the different properties exhibited at the board- and chip-level circuits, the methodology of building a board-level attack benchmark is distinct from building chip-level Trojan benchmark. To facilitate the development of board-level benchmarking, various design rules are created.

Rule 1: The power supply requirements of inserted malicious circuits, unless self-powered, should be compatible with at least one of the voltage domains on the PCB.

At board-level, different chips/components have different power supply requirements such as supply voltage level, maximum current, supply noise tolerance, etc. Thus the PCB developers need to design a hierarchical PDS creating multiple voltage domains to fulfill the requirements of board-level circuits. Similarly, the attackers need to make sure these requirements of the board-level malicious circuit, unless it is self-powered, are compatible with at least one of the voltage domains provided by the board PDS. Even if the malicious circuit is self-powered, the reference voltages, i.e. the zero potential, between the malicious circuit and the victim board need be aligned.

Rule 2: The specifications, e.g. signal type, voltage level, frequency, etc., of the malicious circuits’ I/Os should match the ones of the victim PCB circuit’s I/Os.

At board-level, different signals can have different I/O specifications in a PCB design. For instance, the full-speed USB2.0 protocol defines that the signals are differential-ended running at 12Mbps and the voltage level of the signal line is in 0 ~ 3.3V. While for full-speed I2C protocol, the signals are single-ended running at 400Kbps and the voltage level can be 1.8V, 3.3V, or 5V. Therefore, when inserting a board-level malicious circuit, the attackers need to make sure the I/O specifications match the requirements of the victim circuit.

Rule 3: The wire line accessibility and signal integrity of the victim circuit should not be violated when inserting malicious circuits, except that the violation itself is the mechanism of the attack.
For PCBs with high density or with few stack layers, the routing resources are highly limited and one signal cannot be accessed from every part of the board. Some signals can also be hidden by inner-layer traces and buried vias. Although one signal is accessible, the adversaries need to take care of the signal integrity. At high frequencies the wire lines are regarded as transmission lines and the impedance match needs to be satisfied. Modifications to the signal line may directly disable all the communications on this wire. Therefore, when benchmarking board-level attacks, wire line accessibility and signal integrity must be checked to ensure practical malicious circuits.

Rule 4: The design of the malicious circuits, including the selection of the model, package of the corresponding chips/components, should blend in with the design style of the victim PCB circuits. A board-level malicious circuit can be built by various types of chips/components and accomplished by various methods. For example, there are multiple ways to perform a 4-input XOR logic operation: 1) build the digital circuit using discrete BJTs or MOSFETs; 2) utilize the parts: I/Os with rare activities and unconnected pins of the chips.

3.3 Workflow of Benchmark Generation

Based on these rules, we develop a methodology for generating benchmarks of board-level attacks and a workflow using the method (see Figure 2). The first step is to collect the signals with rare activities for trigger selection. The candidate trigger wires come from two parts: I/Os with rare activities and unconnected pins of the chips. Since the I/O activities of the chips are highly related to the programs of the chips, we perform code analysis based on the code and the architecture of the chips. The resulting wires are then selected as candidate trigger wires (note that the number of trigger wires are decided by attackers). Then the specifications of the wires are looked up from the design reference. Meanwhile, the payload can be specified by attackers or picked from the victim pool, which is built based on the attack vectors mentioned in Section 3.1. In this step, both the traditional digital Trojans and the attacks based on analog properties are considered for the payload. Once the candidate payload wires are selected, the corresponding specifications are also looked up from design files and datasheets. The malicious circuit is designed based on the information of trigger/payload wires specifications, available PDS voltage domains, types of other chips/components, and the available chips/components. Rule 1, 2, and 4 are incorporated in this step. If there exists a malicious circuit design that meets all these rules, an infected schematic can be generated.

For layout level benchmark, packages of the malicious circuit are selected according to the packages of other chips (PCB spare area is a constraint here). Rule 4 is considered in this step. Then based on Rule 3, the placing and routing feasibility are checked, following the signal integrity check. The signal integrity check is not necessary for the board with low speed. Therefore we set up a threshold to determine whether to perform the check, as:

\[
 k \frac{L_b}{6 \text{ inch/ns}} < \frac{1}{f_c} \tag{1}
\]

where \(f_c \) is the clock frequency of the signal, \(L_b \) is the board circumstance, and \(k \) is the safety factor. In this case we set \(k = 3 \). The constant 6 is the propagation speed of the signal at board-level \(v_p = c_0/\sqrt{\epsilon_r} = 6 \text{ inch/ns} \), where \(c_0 = 3 \times 10^8 \text{ m/s} \) is the speed of light, and \(\epsilon_r = 4 \) is the relative dielectric constant for the FR4 material that widely used in PCBs. If the infected layout passes the checks, the benchmark can then be generated. Otherwise, we will return to previous steps (marked as P1, P2, P3, and P4) and re-design the malicious circuit.

It should be noted that this process is finished manually for two reasons: The peripheral circuits of the chips consist of mostly analog-style circuits. Besides, at the board level, the parasitic effects...
we insert three malicious circuits to perform information leakage,
with 141 components while its clock frequency is
120 MHz. The dimension of the board is
102 mm × 53 mm. In this benchmark, we
insert three malicious circuits to perform information leakage,
memory corruption, and deny-of-service (DoS) attacks, respectively. Each malicious circuit is designed by running through the workflow
proposed in Section 3.3 for several iterations. All three malicious circuits can be inserted in S1 and S2 stages.

Figure 3(c) illustrates the schematic of the M2 type attack where
the information is leaked through the LED by inserting an extra
MOSFET. The LED is used for indicating the output pulse-width
modulation (PWM) signal of the microcontroller. The information
from micro-controller passing through the UART0 port is leaked
to the LED. Its clock frequency is 3.68 MHz and the voltage level
is 0 ~ 3.3 V. We select the P-channel MOSFET PMV48XP as the
malicious circuit. It has 1V threshold and turn-on/off delay no more
than 70 ns, fitting the specifications of the victim. When the UART0
TX is in idle mode, the voltage is 3.3 V and the P-channel MOSFET
is turned off so that the original function of the LED indicator
circuit will not be affected. In addition, during the P2 and P3 steps
(see Figure 2), we ensure the model and package of the MOSFET
are the same as the ones used in the original design to keep the
malicious function less suspicious. In schematic generation, the
gate of the MOSFET is connected to the TX pin of the UART0 port.
The source of the MOSFET is connected to the input of the LED
driving amplifier. Attackers can thus monitor the flashing LED to
snoop the transmitted information.

Figure 3(d) shows the malicious modification of an M1 type at-
tack. A maliciously programmed microcontroller ATtiny102F
is inserted into the design. This microcontroller supports UART
communication with no peripheral circuits. We select the UART1 port
as the trigger and the ERASE pin of the ATsam3x8e as the payload.
ATtiny102F can operate under 3.3 V supply voltage which is the
supply voltage of the Arduino Due board. This also ensures the
specifications of ATtiny102F’s I/Os are consistent with the victim’s.
Attacker can send a specific message through UART1 port to Ar-
duino Due and trigger ATtiny102F. Upon receiving the triggering
signal, a pulse longer than 200 ms is generated to ERASE pin, forcing
the ATsam3x8e to erase the embedded Flash memory, causing data
integrity violation. The trigger message can be complex enough to
avoid unintentionally triggering.

Figure 3(e) shows another M2 type attack, which is similar to
a chip-level Trojan. Through code analysis (see Figure 2), we find
that three GPIOs are not used in the program. These GPIOs are
then used as triggers with the payload the RESET pin of ATsam3x8e.
Two 74AHC1G86 XOR logic chips with small packages are inserted
to the design in the P2 and P3 steps of the workflow. By running the
program that triggers the assigned GPIOs, the malicious circuit can
enable RESET to induce hardware reset and crash the system. For
all three malicious circuits, the layouts are generated after the P&R
feasibility and the integrity check (determined by Equation 1). The
malicious circuit included PCB layout is illustrated in Figure 3(b).
pins of power management IC AXP209. Once the two pins are connected, the system is forced to perform a hardware reset. The INT pin of the on-board real-time clock (RTC) chip PCF8563 is selected as the trigger since this pin is rarely used. The malicious circuit is composed of an inverter logic chip 74LV1G06, an N-channel MOSFET BSS138, and the pull-up resistor. During the P2 step (see Figure 2), we ensure the I/O specifications of the malicious circuit are compatible with the victim’s. For the P3 step, The model and the package of the MOSFET is also the same as the ones used in the origin design. Attackers can take advantage of the alarm function of PCF8563 to enable a time-controlled attack. Once triggered, PCF8563 outputs a low pulse at the INT pin. The MOSFET will then be turned on, connecting NOE and APS pins to reset the system. Signal integrity is validated in the generated PCB layout.

Figure 4(d) demonstrates the M1 type attack based on maliciously programmed ATTiny102F for snooping the microphone of the system. ATTiny102F has embedded ADCs which can monitor the analog signals of the microphone input and the information can be transmitted through a board-level UART port. Similar to the previously presented malicious circuit based on ATTiny102F, its power supply is available from the board-level PDS. The P&R feasibility are validated while the signal integrity check is passed according to ASP-DAC 2021, June 18–21, 2021, Tokyo, Japan Huifeng Zhu, Xiaolong Guo, Yier Jin, and Xuan Zhang.

ACKNOWLEDGMENTS
This work was partially supported by DARPA.

REFERENCES
A suite of board-level attack benchmarks using the proposed method is released at https://github.com/xx-group(PCBench).