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Abstract 

A new unbalanced exponent modular reduction over 

GF(2m) is proposed. The algorithm can achieve high ef­

ficiency when computing on a certain class of fields gener­

ated by f(x) = xm + T(x) where deg[T(x)] « m. The 

algorithm is applied in modular multiplication on the basis 

of scalable polynomial basis(SPB) to form scalable mod­

ular multiplication. Most of irreducible polynomials used 

in Elliptic Curve Cryptography(ECC) fulfill the character­

istic mentioned above well. So the scalable algorithm is 

implemented in ECC computation with high flexibility and 

efficiency both in theoretic calculation and application. 

1. Introduction 

Elliptic Curve Cryptography(ECC) was first proposed by 
Koblitz[12] and Miller[15], and has been widely used in 
Elliptic Curve Digital Signature Algorithm ( ECDSA), El­
liptic Curve Integrated Encryption Scheme ( ECIES), ellip­
tic curve Diffie-Hellman scheme[4,5]. Elliptic curves over 
GF(2m) are particularly attractive, because the finite field 
operations can be implemented efficiently both in hardware 
and software[1 ,2, 14]. Thus in this paper, we concentrate on 
ECC over GF(2m). In applications, we may need different 
security level with different key length and scalable method 
is a useful one to fulfill this demand. To support scalable 
computation in hardware and software, scalable algorithms 
are required first. In ECC, the complexity of computation 
bases on point multiplication when parameters of elliptic 
curves are defined. A fast Montgomery point multiplica­
tion in projective field was suggested by Lopez[7], which 
divides point multiplication into modular addition, modu­
lar multiplication and modular inverse, and reduces modu­
lar inverse into one time. With this method, most of com­
putations of ECC are modular multiplications and modular 
additions. 

Many fast modular multiplications in binary field have 
been proposed[9, 13] and Montgomery method is one of the 
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most widely used[2,3]. However, most of these methods 
suit for general condition and do not consider the special 
characteristics of elliptic curves over GF(2m) [4,5,6] whose 
irreducible polynomials are in the form of f(x) = xm + 

xk + 1 wherein k « m or f(x) = xm + xa + xb + XC + 
1 wherein a « m. Making use of this characteristic, we 
propose an improved scalable modular multiplication over 
GF(2m) which can achieve higher computation speed than 
other scalable algorithms. 

The rest of this paper is organized as follows: Sec­
tion 2 introduces details of scalable polynomial representa­
tion(SPB). Based on SPB, a new modular multiplication in 
GF(2m) are proposed in Section 3 . Section 4 presents the 
comparison between scalable modular multiplication pro­
posed here and the widely used Montgomery algorithm. Fi­
nally conclusions are drawn in Section 5. 

2. Scalable Polynomial Representation 

According to [5], there are two common families of basis 
representations: polynomial basis representations and nor­
mal basis representations. In polynomial basis representa­
tion, each element of GF (2m) is represented by a different 
binary polynomial of degree less than m. More explicitly, 
the bit string (am-I, am-2, ... , aI, ao) is taken to represent 
the binary polynomial 

m-l 
a(x) = L aixi 

= am_lXm-1 
+ ... + alX + ao 

i=O 
(1) 

here polynomial basis is the set {xm-l, xm-2, ... , x, I}. 
The addition of bit strings, corresponds to addition of bi­

nary polynomials. Multiplication is defined in terms of an 
irreducible binary polynomial f(x) of degree m, called the 

field polynomial for the representation. The product of two 
elements is simply the product of the corresponding poly­
nomials, reduced modulo f (x). 

In reality, with the purpose to fulfill different secu­
rity level, the key length should be scalable. In high se­
curity implementation, a long key is used while a short 
key is employed in low security occasion so we can 



achieve higher encryption speed. In this method, to rep­
resent an m-bits long number with r-bits long word, word 
counts we need are s = I'mlr l, i.e., we can write a(x) 
as an sr-bit number consisting of s words, where each 
word is of length r. Thus, a m-bit number a can be 
shown as a = (As-I, As-2, . • •  , AI, Ao), where Ai = 

(ail'+l'-l, ail'+l'-2, . . . ,ail'+l, ail'). So the scalable poly­
nomial basis(SPB) representation is: 

8-1 
a(x) = L Ai(X)Xi' 

i=O (2) 

where Ai(x)'s polynomial basis form is: 

3. Modular Multiplication 

Montgomery algorithm is a widely used modular mul­
tiplication algorithm nowadays and it does not compute 
a . b mod f (x) straightforward. Instead, it leverages pre­
computation and compute a·b·r-l mod f(x)[3]. This algo­
rithm can achieve high efficiency when computing modular 
multiplication for general situations. 

In the fields used by ECC over GF(2m), however, poly­
nomials are chosen with their special characteristics of a 
small number of terms[4, 5]. These irreducible polynomi­
als modulo 2 that are minimal, in the sense that they have as 
few terms as possible and that those terms are of the small­
est possible degree. More precisely, if an irreducible binary 
trinomial xm + xk + 1 exists, then the minimal possible 
value of k is listed; if no such trinomial exists, then a pen-
tanomial xm + xa + xb + XC + 1 is listed. In the latter case, 
the value of a is minimal; the value of b is minimal for the 
given a; and c is minimal for the given a and b. Here, k and 
a, b, c fulfill inequality k « m and c < b < a « m. So we 
partition f(x) into xm and T(x), then f(x) = xm + T(x) 
where T(x) = xk + 1 or T(x) = xa + xb + XC + l. Mak­
ing use of this characteristic and reference Montgomery's 
method[3], we propose a new two stages modular multipli­
cation without pre-computation. 

Algorithm 1 Scalable Multiplication over GF(2m) 

Input A(x) = (As-I, As-2, . , . ,AI, Ao) 
B(x) = (Bs-1, Bs-2,.", B1, Bo) 

Output R(x) =A(x)B(x) = (R2s-2,R2s-3"."R1,Ro) 
for i = 0 to s - 1 { 

z = 0; 
for j = 0 to s - 1 {; 

S = Ri+j + AiBj + z; 
Ri+j = S mod x'; 
z = Six' ; 

} 
Ri+s = z; 

} 

Stage 1: to compute a . b. As the similar scalable mul­
tiplication in [8], we present scalable multiplication over 
GF(2m) as Algorithm 1. In Algorithm 1, S is a temporary 
variable of2r-bit length and z means the high r bits of S. 

Stage 2: to compute modular reduction. On bit-level 
consideration, assuming input R(x) of deg[R(x)] = 2m -

2. Then R( x) can be divided into two parts with high degree 
D 

part Rh(X) and low degree part Rz(x). Note that = means 
dividing the left operator into higher and lower part. 

(3) 

where 

Rh(X) = r2m_2Xm-
2 

+ r2m_3Xm-3 + ... + rm+lX + rm (4) 
RI(X) = rm_lXm-1 + rm_2Xm-

2 
+ ... + rlX + ro (5) 

Calculate modular on R(x) with f(x), because modular 
subtraction is the same as modular addition over GF(2m), 
we can obtain: 

R(x) == Rh(X)Xm + Rl(x)mod f(x) 

== Rh(X)(Xm + T(x)) + Rh(X)T(x) + Rl(x)mod f(x) (6) 
== Rh(X)T(x) + Rl(x)mod f(x) 

Repeat ( 6) until Rh is zero. Thus, we have deg[R(x)] ::; 
m-l. 

This new bit-level modular reduction algorithm is shown 
as Algorithm 2. 

Algorithm 2 New Bit-level Modular Reduction over GF(2m) 

Input R(x) = (r2m-2,r2m-3, ... ,rl,ro) 
f(x) = xm + T(x) where deg[T(x)] = k 

Output C(x) = R(x)mod f(x) 
D 

R(x) = Rh(X) . xm + RI(X); 
while (Rh(X) " O){ 

R(x) = Rh(X) . T(x) + RI(X); 
D 

R(x) = Rh(X) . xm + Rl(X); 
} 

C(x) = RI(X); 
return C(x); 

Now we will give the expression of iteration number L 
in Algorithm 2. After one iteration, the most significant bit 
of R(x) changes from (2m -2) to (m -2 + k), it means 
that reduced degree of highest item is 6p = m - k per­
iteration. Obviously after L times iterations Rh = 0, so L 
should fulfill the inequalities: 

(2m -2) - L6p ::; m - 1 
(2m -2) - (L - 1)6p � m - 1 

(7) 

(8) 

According to (3) and (4), we acquire the integer L's range: 

(m - l)/(m - k) ::; L ::; (2m -2 - k)/(m - k) (9) 






