Revisiting Scalable Modular Multiplication over GF(2™) for Elliptic Curve
Cryptography

Yier Jin, Haibin Shen
Institute of VLSI Design, Zhejiang University, Hangzhou, China
shb@vlsi.zju.edu.cn

Abstract

A new unbalanced exponent modular reduction over
GF(2™) is proposed. The algorithm can achieve high ef-
ficiency when computing on a certain class of fields gener-
ated by f(x) = o™ + T(x) where deg[T(x)] < m. The
algorithm is applied in modular multiplication on the basis
of scalable polynomial basis(SPB) to form scalable mod-
ular multiplication. Most of irreducible polynomials used
in Elliptic Curve Cryptography(ECC) fulfill the character-
istic mentioned above well. So the scalable algorithm is
implemented in ECC computation with high flexibility and
efficiency both in theoretic calculation and application.

1. Introduction

Elliptic Curve Cryptography(ECC) was first proposed by
Koblitz[12] and Miller[15], and has been widely used in
Elliptic Curve Digital Signature Algorithm (ECDSA), El-
liptic Curve Integrated Encryption Scheme (ECIES), ellip-
tic curve Diffie-Hellman scheme[4,5]. Elliptic curves over
GF(2™) are particularly attractive, because the finite field
operations can be implemented efficiently both in hardware
and software[1,2,14]. Thus in this paper, we concentrate on
ECC over GF(2™). In applications, we may need different
security level with different key length and scalable method
is a useful one to fulfill this demand. To support scalable
computation in hardware and software, scalable algorithms
are required first. In ECC, the complexity of computation
bases on point multiplication when parameters of elliptic
curves are defined. A fast Montgomery point multiplica-
tion in projective field was suggested by Lopez[7], which
divides point multiplication into modular addition, modu-
lar multiplication and modular inverse, and reduces modu-
lar inverse into one time. With this method, most of com-
putations of ECC are modular multiplications and modular
additions.

Many fast modular multiplications in binary field have
been proposed[9,13] and Montgomery method is one of the

1-4244-0161-5/06/$20.00 ©2006 1EEE

most widely used[2,3]. However, most of these methods
suit for general condition and do not consider the special
characteristics of elliptic curves over GF(2™) [4,5,6] whose
irreducible polynomials are in the form of f(z) = ™ +
zF 4+ 1 wherein k < mor f(z) = 2™ + 2* + 2* + 2° +
1 wherein & < m. Making use of this characteristic, we
propose an improved scalable modular multiplication over
GF(2™) which can achieve higher computation speed than
other scalable algorithms.

The rest of this paper is organized as follows: Sec-
tion 2 introduces details of scalable polynomial representa-
tion(SPB). Based on SPB, a new modular multiplication in
GF(2™) are proposed in Section 3 . Section 4 presents the
comparison between scalable modular multiplication pro-
posed here and the widely used Montgomery algorithm. Fi-
nally conclusions are drawn in Section 5.

2. Scalable Polynomial Representation

According to [5], there are two common families of basis
representations: polynomial basis representations and nor-
mal basis representations. In polynomial basis representa-
tion, each element of GF (2™) is represented by a different
binary polynomial of degree less than m. More explicitly,
the bit string (&, 1, &2, ..., a1, ag) is taken to represent
the binary polynomial

m—1
"(m) = Z 'Jimi = 'vm—lmm_l + -+ 1% + ag (1)
1=0
here polynomial basis is the set {1, ™2 ... x,1}.

The addition of bit strings, corresponds to addition of bi-
nary polynomials. Multiplication is defined in terms of an
irreducible binary polynomial f(z) of degree m, called the
field polynomial for the representation. The product of two
elements is simply the product of the corresponding poly-
nomials, reduced modulo f(z).

In reality, with the purpose to fulfill different secu-
rity level, the key length should be scalable. In high se-
curity implementation, a long key is used while a short
key is employed in low security occasion so we can

achieve higher encryption speed. In this method, to rep-
resent an m-bits long number with r-bits long word, word
counts we need are s = [m/r], i.e., we can write &(z)
as an sr-bit number consisting of s words, where each
word is of length . Thus, a m-bit number a can be
shown as a = (As_1, As_a,..., A1, Ay), where 4; =
(Qirgr—1, Qirgr—2,---,0ir11,0ir). So the scalable poly-
nomial basis(SPB) representation is:

= @
= A1 (@)Y o A(z)z” + Ao()
where A;(x)’s polynomial basis form is:

r—1

j —1
Ai(z) =Y air;7 = dirr 12’

Jj=0

4 Q12+ Qe

3. Modular Multiplication

Montgomery algorithm is a widely used modular mul-
tiplication algorithm nowadays and it does not compute
a - bmod f(x) straightforward. Instead, it leverages pre-
computation and compute &-b-r~! mod f(z)[3]. This algo-
rithm can achieve high efficiency when computing modular

multiplication for general situations.

In the fields used by ECC over GF(2™), however, poly-
nomials are chosen with their special characteristics of a
small number of terms[4, 5]. These irreducible polynomi-
als modulo 2 that are minimal, in the sense that they have as
few terms as possible and that those terms are of the small-
est possible degree. More precisely, if an irreducible binary
trinomial 2™ + x* + 1 exists, then the minimal possible
value of k is listed; if no such trinomial exists, then a pen-
tanomial ™ + z* + 2 + ¢ + 1 is listed. In the latter case,
the value of a is minimal; the value of b is minimal for the
given a; and c is minimal for the given a and b. Here, k and
e, b, cfulfill inequality k < mandc < b < a € m. Sowe
partition f(x) into ™ and T'(x), then f(z) = 2™ + T(z)
where T(z) = 2* + 1 or T'(z) = 2* + z° 4+ 2° + 1. Mak-
ing use of this characteristic and reference Montgomery’s
method[3], we propose a new two stages modular multipli-
cation without pre-computation.

Algorithm 1 Scalable Multiplication over GF(2™)

Input A(z) = (As—1, As—2,..., A1, As)
B(x) = (Bs—1,Bs—2,.. ., B1, Bo)
Output |R(x) = A(x)B(x) = (R2s—2, R2s—3,..., R1, Ro)
fori=0tes— 1{
z=0;
for j=0tes— 1{;
S=Ritj+ AiBj + 2
Ri+]‘ = S med ZET;
z=5/z";
}
Rits =2

}

Stage 1: to compute a - b. As the similar scalable mul-
tiplication in [8], we present scalable multiplication over
GF(2) as Algorithm 1. In Algorithm 1, S is a temporary
variable of 2r-bit length and z means the high r bits of S.

Stage 2: to compute modular reduction. On bit-level
consideration, assuming input R(z) of deg[R(z)] = 2m —
2. Then R(x) can be divided into two parts with high degree

part Ry, (x) and low degree part R;(x). Note that 2 means
dividing the left operator into higher and lower part.

R(z) & Rp(2)a™ + Ry() (3)

where

m—2 m—3
Rh(l“) = Tom—2% + rom-—3%

Ri(2) = rmo12™ " 4 rooz™

e T T (4)
Phdrztre (5)

Calculate modular on R(x) with f(z), because modular
subtraction is the same as modular addition over GF(2™),
we can obtain:

R(z) = Rp(z)z™ + Ri(x)mod f(z)
= Ru@)(@™ 1 1(x)) + Ra(a)1(x) + Ri(x)ymod () (6)
= Rp(2)1'(x) + Ri(z)mod f(z)

Repeat (6) until Ry, is zero. Thus, we have deg[R(x)] <
m — 1.

This new bit-level modular reduction algorithm is shown
as Algorithm 2.

Algorithm 2 New Bit-level Modular Reduction over GF(2™)
Input | R(z) = (r2m—2,72m—3,.-.,71,70)
f(x) = 2™ + 1'(z) where deg[1'(z)] = k
Output |C(z) = R(z)mod f(x)
R(z) 2 Ru(z) - 2™ + Ry();
while (Ry(z) #£ 0){
R(z) = Ry(z) - T'(x) + Ri(x);
R(z) £ Ry (z) - 2™ + Ri(z);

}
Cx) = Ri@);
return C(x);

Now we will give the expression of iteration number L
in Algorithm 2. After one iteration, the most significant bit
of R(x) changes from (2m — 2) to (m — 2 + k), it means
that reduced degree of highest item is Ap = m — k per-
iteration. Obviously after L times iterations R;, = @, so L
should fulfill the inequalities:

(2m —2)—LAp<m —1 @)
2m—-2)—(L-1)Ap>m—1 (8)

According to (3) and (4), we acquire the integer L’s range:

(m=1)/m—-k)<L<(2m-2-k)/(m—k) (9

It is easy to prove the scope [(m — 1)/(m — k), (2m — 2 —
k)/(m — k)] only contains one integer - the right result we
need. Therefore, we have

m—2

L=|

1 10
R (10)
We convert PB basis into SPB basis in Algorithm 2 to get
the scalable modular reduction as showed in stage 2 of Al-
gorithm 3. Note that s = [m/r], ¢t = [k/r] as mentioned
in Section 2.

Algorithm 3 Scalable Modular Multiplication over GF(2™)

Input A(m) = (Asfl,AS,Q,...,Al,A())
B(z) = (Bs—1,Bs-2,..., B1, Bo)
fla)=a™+T(x)
where T(l‘) = (Tt—17 Tt—27 e ,Tl, To)
Output |C(x) = A(x)B{x)mod f(z)
Stage 1: | fori=0tos—1{
z =0
for 5 =0tos—14;
S=Riy;+ AiBj+ z;
Riy; = S modx™;
z=S/x";
}

Ris =z;

R(z) £ Ry(e) - 2" + Ry(x)
while(Ry, (z) # 0){
fori=0tot—1{
z =0
forj=0tos—1{;
S=Ri,, (2) + Ti(e) Ry, (2) +
Ry, ;(z) = S modz”;
z=S/x";

Stage 2:

Algorithm 3 gives the full modular multiplication based
on scalable polynomial basis.

4. Analysis of Scalable Algorithm

In this section, we analyze our scalable modular mul-
tiplication rigorously and compare this algorithm with
Montgomery algorithm[3] of its improvement version in
GF(@2™)[2, 10].

4.1. Complexity of Our Scalable Algorithm

In order to fulfill scalability, we assume the length of
operation unit is a fixed number of r-bit—the same situa-
tion when we implement these algorithms in hardware. We

Table 1. Complexity of our scalable modular
multiplication

MULr XORr
For i =0 tos — 1] B -
z(x) = 0;
forj=0tos—1{; -
s 2 542
8= Ry + A+ e 5 2
4 =8 moda™; - -
2= S/x";
”’H».s = z;
}
1(x) & 1y, (o) - ™7 4 1y ()
while(Ry, (x) # 0){
fori=0tot—1{
z =0
forj=0tos—1(; - -
S:R,v+_(m)+’l'{(m)ﬁ’h,(:1:)+z: s Lt 2.8 L.t
‘it ' i
L) = 8 modax";
z=5/x";
Riys =2
R{w) = iy (x);
R(z) = Rp(x) -« " + Ry(a)
Clw) = Iy (a);
return C{x); - -
Total: 2 s Lt|2-s2 42 s Lt

Table 2. Complexity of scalable Montgomery
algorithm

MULr XORr
| ; s — 19 : :
z(w) = 0; -
= [g(x) + A (2)Bg(2)]q(x)mod =7 28
forj =0tos — 1{ . r
S(w) = () + A (@) By (@) + 1 (@) P () + 2(a); 2. 52 3. 52
if(j # 0) then Cj_q(x) = S(@)mod a” - R
2(x) = S(z) /=") -
Ty = 2(a); } -
Tolal: 2. 52 £ 2-35]3-5°2 + ¢

define word multiplication r-bitxr-bit as MULr, word ad-
dition operation r-bit@r-bit as XORr in GF(2™). And com-
putations of complexity base on these two basic operations.

We calculate operation unit counts of each step for our
scalable modular multiplication, and list them in Table 1.
Note that in Table 1, L means the iteration number defined
in (10), s means word counts of polynomial whose degree
is m and ¢ means word counts of T'(x) whose degree is k,
ie,s=[m/r]andt = [k/r].

4.2. Complexity of Scalable Montgomery
Algorithm

The details of scalable Montgomery modular multiplica-
tion is showed in [10]. As the same manner of Section 4.1,
operation unit counts of each step of scalable Montgomery
algorithm are listed in Table 2.

4.3. Comparisons of Complexity

The comparison is of two levels: 1. from the complex-
ity in terms of word multiplication, word addition opera-

Table 3. Comparing our algorithm with Mont-
gomery algorithm in the fields generated by
f(z) SEC1[4] recommended of 32-bit word
length

Montgomery |Our Proposal | Speedup
Fy163 flz) = 2 " 2% 41| 252 425 %52 15
Fyaas f(z) =2 4 2™ 11 252 + 2s T2 114
F2233 f(l') = 238 + 730 +1 252 + 2s %sz 1.33
Fooag flz) = 2239 4 158 41 252 + 2s %52 0.7
Fooss f(z) = 2% + 21 + 27 + 2% + 1| 257 + 25 1842 138
Fya00 f(z) = 2% 4257 + 1 252 4 2s 1942 1.46
Fysr f(z) =2 + 22 + 2% + 27 + 1| 257 + 25 1042 1.8

Table 4. Experimental speedup values with
flz)y =223+ 2™ +1

word length r=| 8bits | 16bits | 32bits | 64bits | 128bits
Speedup 1.5727(1.7627|1.8605|2.1429| 2.375

tion counts; 2. implementing these two algorithm in C pro-
grams, and obtain timings on a 3GHz Intel Pentium 4 pro-
cessor running the Linux operation system.

In the first level comparison, we select all polynomi-
als SEC1[4] recommended to compute word multiplication
counts in Table 3. Note that we ignore counts of XOR
adders as the complexity of adder is neglectable compared
to multiplier. And we consider the occasion of word length
r=32bits.

From Table 3, we will find that in most of the cases
the algorithm presented here is about 1.5 times faster than
Montgomery scalable modular multiplication.

In the second level comparison, taking polynomial
f(z) = 2?33 + ™ -1 for example, the timings are listed in
Table 4 when we change word length r. With the increase
of word length, the speedup of the proposed algorithm is
increasing significantly. This merit can be rather useful for
nowadays ASIC and MCU use, because the data path is be-
coming wider as well as the width of the operation units.

5. Conclusion

In this paper, a scalable modular multiplication is pro-
posed to improve encryption efficiency for different security
situations. This algorithm leverages an efficient modular re-
duction and can achieve higher enciphering speed compared
to other methods in elliptic curve fields over GF(2™). Fur-
thermore, our method can be implemented in hardware eas-
ily for its finite field computation. By using a high-efficient
r-bit x r-bit multiplier and r-bit & r-bit adder, high speed

and flexibility for operator size can be achieved. Further
work will be concentrated on the design of efficient word
multiplier and word adder.

References

[1] G. B. Agnew, R. C. Mullin, and S. A. Vanstone, “An imple-
mentation of elliptic curve cryptosystems over Fi°° JEEE
Journal on Selected Areas in Communications, Vol. 11, Is-

sue 5, pp. 804-813, 1993.

[2] C. K. Kog and T. Acar, “Montgomery Multiplication in
GF(2%), Design, Codes and Cryptography, vol. 14, no. 1,
pp- 57-69, 1998.

[3] P. L. Montgomery, “Modular multiplication without trial di-
vision,” Mathematics of Computation, vol. 44, no. 170, pp.
519-321, 1985.

[4] Standards for Efficient
tic Curve Cryptography,
http://www.secg.org/

[51 [EEE Standard Specifications for Public-Key Cryptography,
IEEE Std 1363-2000, 2000.

[6] [EEE Standard Specifications for Public-Key Cryptography-
Amendment 1: Additional Techniques, ITEEE Std 1363a-
2004 (Amendment to IEEE Std 1363-2000), 2004.

[7] J. Lépez and R. Dahab, “Fast multiplication on elliptic
curves over GF'(2™) without precomputation,” Crypto-
graphic Hardware and Embedded Systems - CHES ’99,

LNCS 1717, pp. 316-327, 1999.

[8] C. K. Kog, T. Acar, and B. S. Jr. Kaliski, “Analyzing and
comparing Montgomery multiplication algorithms,” Micro,
1EEE, Vol. 16, Issue 3, pp. 26-33, 1996.

[9] S. V. Bharathwaj, and K. L. Narasimhan, “An alternate ap-
proach to modular multiplication for finite fields GF(2™) us-
ing Ttoh Tsujii algorithm,” IEEE-NEWCAS Conference, pp.
103-105, 2005.

[10] A. Satoh, and K. Takano. “A scalable dual-field elliptic
curve cryptographic processor,” IEEE Transactions on Com-

puters, Vol. 52, Issue 4, pp. 449 - 460, 2003.

[11] H. Eberle, N. Gura, and S. Chang-Shantz, “A crypto-
graphic processor for arbitrary elliptic curves over GF(2""),”
Application-Specific Systems, Architectures, and Proces-
sors, pp. 444 - 454, 2003.

[12] N. Koblitz, “Elliptic Curve Cryptosystems,” Mathematics of
Computation, 48, pp. 203-209, 1987.

[13] P.Barrett, “Implementing the Rivest Shamir and Adleman
public key encryption algorithm on astandard digital signal
processor,” Advances in Cryptology-CRYPTO 86, pp. 311-
323, 1987.

[14] E. De Win, S. Mister, B. Preneel, and M. Wiener, “On
the performance of signature schemes based on elliptic
curves,” Algorithmic Number Theory, Proceedings Third In-
tern. Symp., ANTS-1II, LNCS 1423, pp. 252-266, 1998.

[15] V. Miller, “Uses of elliptic curves in cryptography.” Ad-
vances in Cryptology: proceedings of Crypto’85, LNCS,
Vol. 218, pp. 417-426, 1986.

[16] A. F. Tenca, and C. K. Kog, “A Scalable Architecture

for Modular Multiplication Based on Montgomery’s Algo-
rithm,” IEEE Transactions on Computers, Vol. 52, No. 9, pp.
1215-1221, 2003.

Cryptography I: Ellip-
Version 1.5, draft, 2003.

